
UTAH GOVPAY:

THE OFFICIAL PAYMENT SOLUTION FOR UTAH GOVERNMENT

Technical Manual

“Extend the power of your website…by taking payments online”

This Utah GovPay Technical Manual contains the following information:

Utah GovPay: __ 1
The Official Payment Solution for Utah government_____________________________ 1

WPS Web Service Overview: __ 3

Terminology __ 4

Features__ 4

Operations ___ 5

Complex XML Types ___ 5

Sample Web Service Java Code: __ 9

WPS WEB SERVICE OVERVIEW:

The Utah GovPay WPS web service provides a secure method to pass customer transaction information
between the Agency’s web application and Utah GovPay.

The WPS is the backend link into the Utah GovPay system and was designed to prevent web users from
fraudulently altering their own transaction data. WPS has two main functions, registering transactions
and querying transactions. In the registration process, the agency’s web application sends the
transaction data to WPS and WPS returns a registration ID. The Agency’s web application then
forwards the user to Utah GovPay with the registration ID.

After a completed payment transaction, the Agency’s web application can use the registration ID to
query WPS to find out if the transaction was approved.

.

The Register Transaction process follows the following steps:
1. When the user is ready to make a payment, the agency’s web application sends details of the

payment in XML using the Soap format to the Utah GovPay Web Service or WPS.
2. The Utah GovPay WPS creates a Registration ID, stores the transaction information and

registration ID in a database and returns a registration ID back to the agency’s web application.

3. The agency’s web application redirects the user to the Utah GovPay URL and includes the
registration ID in the query string. This Utah GovPay URL will be created during the Utah
GovPay setup.

4. The Utah GovPay website uses the registration ID to retrieve the transaction data and then takes
the user through the payment process.

The Query Transaction process:
1. The agency’s web application sends a soap message with the registration ID
2. The Utah GovPay Web Service returns the results of the transaction. The details of the soap

message are listed below in the Complex XLM types under PaymentprocessingResult.

TERMINOLOGY

* Registration Id - The unique identifier used generated by WPS. The calling application should pass
this to WPS when the user is handed off.
* Calling Application – This is the outside application built by the agency.
* Web Service – A piece of software that can be accessed over the Internet by another application using
XML to send or retrieve information.
* Web Application – A web application uses a web site as a front end to interact with users across the
Internet.

FEATURES

Current features of the WPS web service are:

 * Register Transaction Details
 * Retrieve Payment Processing Result in XML for a single transaction
 * Retrieve Payment Processing Result in text for a single transaction

OPERATIONS

The following operations are available in the WPS web service.

Register a Transaction – Information about the transaction is sent from the Calling Application to WPS
and a registration ID is sent back the Calling Application. The name of this operation is “register”

Query a Transaction – The registration ID or a group of registration ID’s are sent from the Calling
Application to WPS and the results of the transaction are returned to the Calling Application. There are
two operations that can be used to retrieve information about the transaction after it has been processed.
* getTransactionsByRegistrationID returns all the transaction information in an XML format.
* getStatusByRegistrationID returns a string with one of four possible messages.

WSDL URLS PRODUCTION:

https://secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl
https://secure.utah.gov/service-wps-v2-0/services/queryTransactions?wsdl

WSDL URLS TEST:

https://test.secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl
https://test.secure.utah.gov/service-wps-v2-0/services/queryTransactions?wsdl

Operation Name Input Output Faults
register * WpsAccount

* TransactionDetail
String –
RegistrationId

Generic SOAP
fault should an
error occur

getTransactionsByRegistrationId * WpsAccount
* RegistrationID

PaymentProcessingResult Generic SOAP
fault should an
error occur

getStatusByRegistrationId * WpsAccount
* RegistrationID

String –
(not-found, error,
successful, declined)

Generic SOAP
fault should an
error occur

COMPLEX XML TYPES

Field Name Type Length Restrictio
n

Description

WPSACCOUNT

username String 128 Required Assigned by Utah Interactive
password String 128 Required Assigned by Utah Interactive

id Long Null Used by Utah Interactive- leave null

TRANSACTIONDETAIL

allowedPaymentTypes String[] 128 Optional An array of values indicating the
types of payment a user can make.
Possible values: CREDITCARD,
ECHECK

ECHECK
failUrl String Optional The URL to send the user to upon

failed payment. Can be set up as
default. See account setup form

id Long Null Used by Utah Interactive- leave null
items ITEM[] An array of Items, each describing

what the end user is paying for. (see
ITEM below)

paymentProccessingResultID String Null Used by Utah Interactive- leave null
prePopAddressLine1 String 128 Optional Value to use to pre-populate the credit

card address line 1 field
prePopAddressLine2 String 128 Optional Value to use to pre-populate the credit

card address line 2 field
prePopCity String 128 Optional Value to use to pre-populate the credit

card city field
prePopEmailAddress String 128 Optional Value to use to pre-populate the credit

card email address field
prePopName String 128 Optional Value to use to pre-populate the credit

card name field
prePopPostalCode String 128 Optional Value to use to pre-populate the credit

card postal/zip code field
prePopStateProvince String 128 Optional Value to use to pre-populate the credit

card state/province field
registrationId String 128 Null Created by Utah Interactive- leave

null during registration. This ID will
be returned during the Query
Payment Operation

sharedSecretName String 128 Required
for
eChecks

The name of the shared secret to
display to the user. eChecks require
users to confirm some information.

sharedSecretValue String 128 Required
for
eChecks

A value that the user should know
that is used to authenticate them when
making an eCheck payment

successMessage String 128 Optional A message to be displayed upon
successful payment. Can be set up as
default. See account setup form

successUrl String Optional The URL to send the user to upon
successful payment. Can be set up as
default. See account setup form

wpsAccountId Long Null Used by Utah Interactive- leave null

ITEM

amountEach Long Required The amount of each item (See Note 1
below)

customerId String 128 Required A value that uniquely identifies the
customer in the calling application.
Examples include license or account
numbers.

customFields Custom
Field[]

Optional An array of custom fields that are
passed into the Utah GovPay admin.
(see CUSTOMFIELD below)

description String 255 Required A description of the item
id Long Null Used by Utah Interactive- leave null

quantity Long Required The quantity of this item
transactionDetailId Long Null Used by Utah Interactive- leave null

transactionId String 128 Required
– Unique

Unique identifier for the transaction
in the calling application

transactionType String 128 Optional A code identifying the type of
transaction this is. If applicable the
FINET code should be put here.

CUSTOMFIELD

id Long Used by Utah Interactive- leave null
itemId Long Used by Utah Interactive- leave null
name String 64 Required The name of the custom field
value String 128 Required The value of the custom field

PAYMENTPROCESSINGRESULT

addressLine1 String 128 Address used for payment
addressLine2 String 128 Address used for payment

authorizationCode String 10 Code provided by payment processor
auxilaryMessage String 255

city String 128 City used for payment
completionDate Timesta

mp
Date transaction completed

country String 128 Country used for payment
error String 10 Boolean (True or False). The false

result could be caused by either a
success or a declined transaction.
(See Note 2 below)

gatewayTransactionId String 128
id Long Used by Utah Interactive- leave null

name String 128 Name used for payment
orderId String 16 Unique order ID created by Utah

interactive.
paymentSuccessful String 10 Boolean (True or False). The false

result could be caused by either a
technical error or a declined
transaction (See Note 2 below)

postalCode String 10 Zip used for payment
stateProvince String 2 State used for payment

statusMessage String 255 Message provided by payment
processor

transactionDetail transactionDetail[] All the transaction information that
was originally sent to WPS during the
register operation. (See
TRANSACTIONDETAIL above)

register operation. (See
TRANSACTIONDETAIL above)

Note 1: The total payment amount for the transaction is calculated by multiplying each ITEM quantity
by the ITEM’s amountEach.

Note 2: There are three possible outcomes for Is_Success and Is_Error in the PaymentProcessingResult:
• If paymentSuccessful = True then the transaction was SUCCESSFUL
• If paymentSuccessful=False & Error=False then the transaction was DECLINED
• If Error=True then the transaction had a technical ERROR

SAMPLE WEB SERVICE JAVA CODE:

import gov.utah.secure.wps.model.TransactionDetail;
import gov.utah.secure.wps.model.WpsAccount;
import gov.utah.secure.wps.model.Item;
import gov.utah.secure.wps.model.CustomField;
import gov.utah.secure.wps.service.RegisterTransaction;
import gov.utah.secure.wps.service.RegisterTransactionLocator;
import gov.utah.secure.wps.service.RegisterTransactionWebService;

import java.net.URL;
import java.net.MalformedURLException;
import java.rmi.RemoteException;

public class GovPayRegister
{
 private static final String wpsAccountUsername = "";
 private static final String wpsAccountPassword = "";

 public static void main(String[] args)
 {
 /* URL for Utah Interactive's GovPay Registration Web Service */
 String url = "https://test.secure.utah.gov/service-wps-v2-0/services/registerTransaction?wsdl";
 URL registrationWebServiceUrl;
 try
 {
 registrationWebServiceUrl = new URL(url);
 }
 catch (MalformedURLException e)
 {
 String s = "Unable to recognize govpay web service url " + url;
 System.err.println(s);
 e.printStackTrace();
 return;
 }
 System.out.println("Registering request");

 WpsAccount wpsAcct = constructWpsAccount();
 TransactionDetail trxDetail = constructTransactionDetail();

 RegisterTransaction service = new RegisterTransactionLocator();
 RegisterTransactionWebService webService;
 try
 {
 webService = service.getregisterTransaction(registrationWebServiceUrl);
 }
 catch (Exception e)
 {
 String s = "Unable to connect to registration web service at " + registrationWebServiceUrl;

 System.err.println(s);
 e.printStackTrace();
 return;
 }
 String registrationId;
 try
 {
 registrationId = webService.register(wpsAcct, trxDetail);
 }
 catch (RemoteException e)
 {
 String s = "Unable to register request";
 System.err.println(s + "\nWpsAccount: " + wpsAcct + "\nTransactionDetail: " + trxDetail +
"\n");
 e.printStackTrace();
 return;
 }
 System.out.println("Registration Id: " + registrationId);
 }

 private static WpsAccount constructWpsAccount()
 {
 WpsAccount wpsAcct = new WpsAccount();

 wpsAcct.setUsername(wpsAccountUsername);
 wpsAcct.setPassword(wpsAccountPassword);

 return wpsAcct;
 }

 private static TransactionDetail constructTransactionDetail()
 {
 CustomField customField1 = new CustomField();
 customField1.setName("First Field Name");
 customField1.setValue("First Field Value");

 CustomField customField2 = new CustomField();
 customField2.setName("Second Field Name");
 customField2.setValue("Second Field Value");

 CustomField customField3 = new CustomField();
 customField3.setName("Third Field Name");
 customField3.setValue("Third Field Value");

 Item item = new Item();

 item.setAmountEach(12.00);
 item.setCustomerId("12345");
 item.setDescription("My Cool Item");

 item.setQuantity(1);
 String transactionId = String.valueOf(System.currentTimeMillis());
 item.setTransactionId(transactionId);
 item.setTransactionType("Finet-001");
 item.setCustomFields(new CustomField[] {customField1, customField2, customField3});

 TransactionDetail trxDetail = new TransactionDetail();

 trxDetail.setAllowedPaymentTypes(new String[] {"CREDITCARD", "ECHECK"});
 trxDetail.setFailUrl("");
 trxDetail.setItems(new Item[] {item});
 trxDetail.setPrePopAddressLine1("123 Fake Street");
 trxDetail.setPrePopCity("Springfield");
 trxDetail.setPrePopEmailAddress("KnifeyWifey@thesimpsons.tv");
 trxDetail.setPrePopName("Knifey Wifey");
 trxDetail.setPrePopPostalCode("84000-1234");
 trxDetail.setPrePopStateProvince("UT");
 trxDetail.setSharedSecretName("");
 trxDetail.setSharedSecretValue("");
 trxDetail.setSuccessMessage("Thank you for purchasing 'My Item'");
 trxDetail.setSuccessUrl("https://example.com/coolapp/?trxId=" + transactionId);

 return trxDetail;
 }
}

